
 

  

In this section we will cover the topic of dimensional analysis which is useful in 

showing that equations are correct, similarity which we can use to show that scale 

models will behave like the real thing, flow numbers which show use which type of 

flow is present and an introduction to computation fluid dynamics – using computers 

to simulate flow.   
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FLUIDS 3 
MODELLING AND ANALYSIS 

OVERVIEW 

 

In this section you’ll learn about: 

• Dimensional analysis and how it may be used to check or even 

generate equations 

• Flow numbers and types of flow 

• Similarity and making physical models 

• What CFD is and how it is used  

ASSUMED KNOWLEDGE FOR THIS MODULE 

 

In this subject it is assumed that you already have a knowledge of the 

following topics: 

 

• Basic fluid Mechanics – The Continuity Equation, Bernoulli’s 

Equation and Forces in Fluids 

 

• Fluid parameters – Density, Pressure and Viscosity. 

 

• Fluid Statics – Hydrostaic pressure  

 

  

OBJECTIVE 

To understand the 

different analytical 

tools available to us 

in the study of fluids.  
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TOPIC 1 – DIMENSIONAL ANALYSIS  

 

i) Using DA to show an equation is consistent. 

Dimensional Analysis uses units present in a formula (for example, Time labelled T, Distance 

labelled L and Mass labelled M) to analyze whether the formula is likely to be correct or even 

to find an unknown equation. As an example, we say that the dimensions of velocity (measured 

in ms-1) are LT-1.   

One of the simplest things to do with Dimensional Analysis is to prove a formula is consistent 

and to also to shed light on its operation. We can examine this by considering Bernoulli’s 

equation. 
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and the third term p. 
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So, we can see clearly from this example that all three elements of Bernoulli’s equation are 

consistent, having dimensions of 
M

T L2 . Now, it’s often said that Bernoulli’s Equation 

represents an energy balance in that all the energies in the system must add up to a constant. 

 

Pressure energy + Kinetic energy + Gravitational potential energy = Const  

 

So, let’s see if this is true. Let’s consider the dimensions of energy itself (we’ll take Kinetic 

as an example). 
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So it’s not true! Energy has dimensions 
ML

T

2

2 but Bernoulli’s equation has dimensions 
M

T L2  - 

how can this be reconciled? Well if we divide the energy dimensions by a volume L3 we get 

ML

T L

M

T L

2

2 3 2( )
= . In other words, Bernoulli’s equation is giving us not the energy, but the energy 

density of the flow. This makes perfect sense if you think about it - it’s the energy at any one 

point on a streamline we want (not the energy of the whole flow). We can see from this 

example that DA is quite useful in shedding light on the operation and “meaning” of a formula.  
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Before we move on, let’s consider one more simple example, which illustrates how we can 

prove a formula is consistent using DA. 

Consider the formula for force in a fluid, which you encountered in second year. 

F mv=   

From the previous example, we know that force is 
ML

T 2 . We also know that v
L

T
= . Now 
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We can see clearly that the right and left parts of the equation are the same units - and so 

we know that the equation is consistent. 

 

 

 

 

 

 

TASK 1 
 
Show that these two equations from the last section (on pipes and pumps) are 
consistent: 
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In this equation, the friction factor (f) is a simple number (no dimensions). You can 
use the result for pressure from page 3 as a starting point  
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ii) Using DA to develop a formula  

Dimensional analysis can also be used to work out formulae. This is quite a large area of 

interest with several methods and theorems, so we’ll only just show the operation of a simple 

example here. Refer to your textbooks for more detail.  

As an example, consider that we are trying to develop a formula to express the flow-rate of a 

viscous fluid in a round pipe (a useful formula in itself).  

The first thing to establish is what parameters might be involved. Thinking about this, we’d 

expect the viscosity of the fluid () to be important. Also, the radius of the pipe (r) and the 

pressure drop (which I’ll express as the pressure drop per unit length - dp/dx). So volumetric 

flow rate Q is a function of all these, or: 

Q f r
dp

dx
=









, ,  

Now, let’s consider the dimensions involved in each of these parameters. 

  

Q r  dp/dx 

L3T-1  L ML-1T-1 ML-2T-2 

 

Now, we don’t know exactly the form of the equation of Q. But it’s probably of a form like 

this. 
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Where  is a constant and ,  and  are powers which these variables are raised to. Of course 

it’s also possible that there could be sum terms as well - but this example has been chosen to 

work it out without them - refer to the textbooks if you’d like to know how to handle these.  

What we do now is rewrite this in terms of . 

 =




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
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dp

dx
Q 



  

Actually, I’ve cheated slightly here because the signs of ,  and  are going be different in 

this version as I’ve transposed the formula. Now, we can write this in terms of the dimensions 

of each parameter. 



 
 

6
 

 = − − − −( ) ( ) ( ) ( )L ML T ML T L T  1 1 2 2 3 1  

As a check you can see if this multiplies out to M0L0T0 as it has to since  is a dimensionless 

constant. 

Now let’s take each dimension in turn and write down the powers to which it’s raised (their 

all equal to zero because they multiple out to the power of zero). 

Mass (M):  +  = 0 

Length (L):  -  -2 +3 = 0 

Time (T): - - 2 -1 = 0 

These three equations can be solved simultaneously and we get  = -4,  = 1 and  = -1. So: 
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This is really as far as we can go. We need to conduct some experiments or use some other 

theory to determine the constant . However, in reality it turns out to be 


8
 and so the 

formula is often written like this: 

Q
r p

L
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Where L is the length of pipe and p is the pressure drop in the pipe. 

 

 

TASK 2 
 
Use the technique explained above to derive the equation shown in task one (not 
including the exact constants, of course) for volumetric flow rate in a frictionless 
pipe. You can assume the Q = f(D, v)  
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TOPIC 2 – SIMILARITY AND FLOW NUMBERS  

 

Similarity is often included in book chapters with Dimensional Analysis, but in reality it’s only 

distantly related to the above and it’s been included here, along with DA, because it’s 

convenient. It has to do with the number describing types of flow and their effect on modelling 

in fluids.  

There are a number of parameters, related to flow which tell us about the type of flow present 

and its physical attributes. We’ve come across some of these before, others are new. When 

we a solving a problem involving fluid mechanics we often start by calculating these numbers 

to tell us which flow regime we are in and therefore which equations to use.  

• Reynold’s number 

Re =




Vl

 

We have already met Reynold’s number several times. It tells us the ratio between inertial and viscous 

forces in the fluid. This in turn tell us when to expect the onset on turbulence. Re < 2000 - Laminar 

flow, Re > 2000 turbulent flow. 

• Mach number 

M
V

c
=

 

This tells us whether the flow is faster or slower than sound (and so if we can expect shockwaves to 

dominate the flow). In the formula above, c is the speed of sound. The formula actually indicates the 

square root of the ratio of the inertial force to the compression force in the fluid. M < 1 subsonic flow, 

M > 1 supersonic flow. 

• Froude number 

Fe
V

gl
=

 

Here’s one we haven’t come across before. It’s the square root of the ratio of the inertia force to the 

gravity force. It tells us whether a disturbance in the flow (for example a wave) travels faster than the 

flow itself (and so can propagate upstream) - this is called Subcritical Flow. The alternative is that the 
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flow is going faster than the wave (in which case, the wave gets swept downstream) - this is 

Supercritical Flow. Fe < 1 is Subcritical, Fe > 1 is Supercritical. You can see from this that Froude 

number is similar in some ways to Mach number.  

• Weber Number  

We
V l

=




2

 

This is the ratio between inertial force and surface tension. It tells us when surface tension effects 

become important in a fluid (if We < 1). Surface tension is important in flow through thin tubes 

(capillary flow) and of very shallow flows and those of small droplets and bubbles. The topic of fluids 

in which surface tension is important is called “microfluidics.”  

These are some of the most important numbers representing flows – but there are several others 

sometimes used, which you can look up in your textbooks. These include: The Strouhal number which 

tells us when flows cause structures to vibrate or self-oscillate - important in the design of bridges, 

tall chimneys, etc). The Euler Number tells us about the pressure force in relation to inertial force and 

is important in the design of aerofoils and in cavitation calculations. Drag Coefficient and Lift 

Coefficient tell us about the ratio of drag and lift to inertial force. Finally Friction Factor we’ve already 

met and is the ratio of pressure drop to inertial force 

p

V05 2. 
 As an exercise have a look at the list of 

flow description numbers in the Wikipedia entry “Dimensionless numbers in fluid mechanics”. 

TOPIC 3 – SIMILARITY AND SCALE MODELS 

 

The numbers described in the section above tell us about the nature of various flows. They 

also play an important part in other calculations – particularly those which involve making and 

using scale models. If we are designing a new aircraft or a new wind turbine, we can’t build a 

full-scale model to test it - that would be expensive and dangerous. We’d like to build scale 

models and test them instead. But how do we know that the models are going to behave in 

the same way as the real full-sized thing. The answer is that they generally don’t.  

You can see this if you compare a small model of an aircraft wing to the full sized thing. The 

small model will have a low Reynold’s number 




Vl
because l is small (the breadth of the wing) 

and probably so is V. If the Reynold’s number is small, then the airflow over the model wing 
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will be laminar. However, that over the full sized wing probably won’t be. This means that 

the model doesn’t behave like a cut-down version of the big wing - it behaves quite differently.  

The way to overcome this problem and to make the model behave like the full sized version 

is to arrange for the numbers above to be equal in both cases. Actually, in many cases, not all 

the numbers are important and often it’s the Reynold’s number that has the major effect 

(particularly in incompressible gas flow). However, you must be cautious when considering 

this and think carefully about the flow regime – for example, in small-scale flows the Weber 

Number may be the most important.  

In our example above, we could make the Reynold’s number the same by increasing the 

density, the speed or both. A decrease in l by a factor of five, for example, could be 

compensated for by an increase in speed or density by a similar factor of five. 

This why high speed, pressurized wind tunnels are sometimes used. Another solution which is 

sometimes adopted is to test in water (which has a higher viscosity) or another gas.  

TASK 3 
 
The mid-wing chord-length of a Boeing 787 “dreamliner” aircraft is about 6 meters 
(if you don’t know what this means, look up “wing chord-length”). The operating 
speed is 900km/h at an altitude of 10.7km. We wish to build a 1/6th model of this 
part of the wing for wind-tunnel testing. 
 
Discuss which of the flow-numbers mentioned in topic 2 are important in this 
application.  
 
Suggest how a tunnel could be set up for this testing – in particular discuss the 
operating fluids, pressure and velocity of tunnel.      
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TOPIC 4 – COMPUTATIONAL FLUID DYNAMICS 

Computational Fluid Dynamics or CFD is the most important computational method in our 

modern fluids toolkit. It involves using a computer to solve the complex fundamental equations 

of fluid mechanics.  

These equations are generally referred to as the Navier-Stokes Equations (in their full form) 

or the Euler Equations (in their inviscid form). The names are somewhat informal, as other 

equations are also required to provide the full solution – in particular the full set requires 

equations which describe the conservation of mass, momentum and energy in the fluid.   

We have only been able to approximate these equations since computers became widely 

available (they are complex and in most cases they cannot be solved explicitly) - so CFD has 

only recently become very widely used. The full set of equations is very complex and so for 

simpler flows – like inviscid or incompressible flows, a more basic set is used and often a 2D 

(or even a 1D) simulation is performed, rather than the full 3-dimensional treatment. 

The idea works like this: All the different conservation equations which we have written down 

for solving fluid problems can also be written in a differential (or integral) form. For example, 

take conservation of mass (the continuity equation, vA = constant): 
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or, to expand the grad symbol out: 
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This looks horrendously complex, but actually it’s just saying exactly the same thing as the simple 

version (that the mass in a confined volume is contant): 
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A change  + a change in mass  =  0 
in density  (due to stuff flowing  
   in or out) 
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It can also be written as an integral equation. 
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But why write them is such a complex way? Well it turns out that, although this makes them very 

difficult for a human to solve, they are easy for a computer to solve. The computer code replaces 

all the derivatives in the equations by “difference equations”, which approximate them and, which 

we can add actual values into – for example:  

ttdt

d TT



−
=




 +  1  

This replaces the derivative on the left by an algebraic equation on the right. Doing this is called 

discretizing the equation. If we now set up initial values for the parameters at a particular time 

(θT) then we can use this approximation to calculate an approximate value for the parameter at 

some short time (Δt) later (θT+1). A computer can do this for thousands or millions of closely spaced 

points and so accurately approximate the real function. It typically does this by setting up a mesh 

of points through the space to be simulated, in the form of a grid as shown below (around a wing): 

 

The placing and form of this mesh or grid is absolutely critical to the success of the simulation and 

whether the results are accurate. The grid needs to be fine around places where the flow is complex 

and course around where it is not (making it fine everywhere doesn’t work, as the simulation takes 

too long). If the grid is not correctly used, not only will the flow around the complex parts be 

incorrect, but because these results are used in further down-stream calculations, these will also 

be wrong. 

 

 

Change of density     +          Mass flowing through =   0
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This enables all the important parameters to be calculated (typically pressures, density, 

temperature and velocity) at each point and produce a “map” of them as shown (pressure around 

a sphere in this case): 

 

CFD results must be used with great care and “normal” paper calculations should be used to check 

that they are giving expected results. Things which can go wrong include: 

• Miss-structuring the grid or mesh as explained above.  

• Because the simulation is an approximation, the accuracy degenerates and diverges from 

reality as further calculations are performed.  

• The simulation is only as good as the input data.  

• Because it is an iterative process, sometimes the simulation becomes unstable (like 

instability in a control system) and the values become wildly inaccurate.  

• Turbulence is a chaotic phenomenon and inherently unpredictable – so simulation of it is at 

best a “good guess”. 

The upshot of this is that you must treat CFD results with suspicion and remember their limitations.  

Three main types of simulation are used commonly used in CFD (shown overleaf). 
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• Finite difference method – uses the differential equations as a starting point and calculates the 

values at points on the grid.  

• Finite volume method – uses integral equations and calculates the values in small volumes of 

space. This is now the most common type.   

• Finite elements – uses the FEA techniques discussed in solid mechanics.  

SUMMARY 

 

• Dimensional analysis can be used to check that equations are consistent and also to provide 

information about their structure. 

• DA may also be used to find an approximate formula for a parameter (but lacks the ability to 

find the constants involved). 

• Flow numbers allow us to identify the flow regime a system is operating in and also which flow 

parameters are important within that regime.  

• When building scale models for wind-tunnel or water testing we much identify which flow 

numbers are important to our system and take step to ensure that the model results are valid 

through similarity.   

• CFD is one of the most important modern tools for fluid mechanics. 

• Results from CFD models must be treated with care as they may be misleading.  

 

 


